

UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, D.C. 20460

> OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION

MEMORANDUM

- DATE: November 1, 2016
- SUBJECT: Drinking Water Assessment for the New Chemical Florpyrauxifen-benzyl (XDE-848 Benzyl Ester, Rinskor[™]), in Support of the Health Effects Division's Human Health Risk Assessment (PC Code 030093; DP Barcode D429727)
- **FROM:** José Meléndez, Chemist Environmental Risk Branch 5 Environmental Fate and Effects Division (7507P)
- **THROUGH:** Mah T. Shamim, Ph.D., Branch Chief Environmental Risk Branch 5 Environmental Fate and Effects Division (7507P)
- TO: Karen Samek, Risk Manager Reviewer Kathryn Montague, Product Manager #23 Dan Kenny, Branch Chief Herbicide Branch Registration Division (7505P)
- AND: Barry O'Keefe, Risk Assessor Meheret Negussie, Chemist Barbara Madden, Acting Branch Chief Risk Assessment Branch 3 Health Effects Division (7509P)

This memo presents the Environmental Fate and Effects Division's (EFED) Tier I Estimated Drinking Water Concentrations (EDWCs) for florpyrauxifen-benzyl (CAS No. 1390661-72-9; alternate names: XDE-848 benzyl ester, XDE-848 BE, RinskorTM), calculated using the Tier I Rice Model v.1.0 (for the rice use), or based on the maximum proposed application rate (for the aquatics use pattern), for use in the human health risk assessment by the Health Effects Division (HED). The registrant seeks registration for the new uses of the chemical on rice and aquatics.

Based on the degradation profile and the available data on the major degradates of florpyrauxifen-benzyl, the majority of the mass of parent is expected to reach paddy water/soil, while a smaller amount is expected to reach adjacent surface water by drift. The majority of parent reaching paddy water/soil is expected to partition into the soil and in the paddy environment and degrade rather quickly $[t_{1/2} = 12-31 \text{ days}]$ in aerobic soil (flooded system), and 15-46 days in anaerobic soil environments; if the test substance is applied to dry soils, the half-lives will range from 8.9-348 days]. Parent reaching water bodies by drift or applied directly to water (aquatics use), is expected to degrade rather quickly $(t_{1/2} = 4.0-6.2 \text{ days}]$ in aerobic aquatic, and 2.1-2.4 days in anaerobic aquatic environments). These half-life values were selected based on the process involved in the field. The soils studies were considered representative of the paddy and the sediment studies were considered representative of an aquatics site (*e.g.*, a pond).

The Tier I Estimated Drinking Water Concentrations (EDWCs) for florpyrauxifen-benzyl for use in the human health risk assessment by HED, based on the maximum application rate for the aquatics use pattern, were as follows: for florpyrauxifen-benzyl in surface water, the acute and chronic surface waters EDWC should not exceed 150 ppb. In an email communication from HED to EFED on October 25, 2016, EFED was notified that HED will perform a qualitative assessment for florpyrauxifen-benzyl, which is the only chemical included in this DWA. Should any questions arise, please contact José Meléndez at melendez.jose@epa.gov.

Identification of Data Gaps

The environmental fate database for florpyrauxifen-benzyl is considered substantially complete. Several of the fate studies were considered supplemental, since certain deficiencies were observed; however, given the high number of studies pointing towards similar conclusions, including the field studies, it is believed that the environmental fate of this compound is relatively well understood. There is uncertainty in the fate studies conducted with soils and sediments, since high levels of unextracted radioactivity were observed. In the laboratory studies, the extractions were conducted with a relatively polar solvent in all instances. However, a supplemental study was conducted in which three additional solvents with a wide range of dielectric constants were used. No secondary extraction with acetone, hexane and ethyl acetate, at room temperature, yielded >3% of the applied. Additionally, for the benzyl-labeled florpyrauxifen-benzyl, the total recoveries were below guideline requirements (90-110% AR) in many studies. The main products of this labeled substance were benzoic acid and benzyl alcohol (depending on the study), both of which the registrant claims are of low toxicological concern.

EXECUTIVE SUMMARY

Florpyrauxifen benzyl (XDE-848 benzyl ester; PC Code 030093; CAS No. 1390661-72-9, **Table 1**) is a new systemic auxin herbicide (WSSA Group 4; HRAC Group O) currently proposed only for uses on rice fields (in AR, FL, LA, MS, MO, SC, TN and TX¹) for post-emergence grass, sedge, and broadleaf weed control; and for aquatics applications, for management of freshwater aquatic vegetation in ponds, lakes, reservoirs, marshes, wetlands, bayous, drainage ditches, canals,

¹ These are most of the major rice producing states in the U.S., with the notable exception of California.

and other aquatic sites, including vegetation control on shoreline and riparian areas within or adjacent to these sites (includes both, direct in water applications or foliar applications to aquatic vegetation).

In addition to the technical product, four end use products (GF-3206, GF-3301, GF-3480, and GF-3565) are proposed for registration in the U.S. Two of the proposed end-use products contain an additional active ingredients, including cyhalofop or penoxsulam. Florpyrauxifenbenzyl may be applied as a foliar spray twice per year via aerial or ground equipment at a maximum single application rate of 0.0300 kg a.i./ha for the rice use (two applications allowed per season) or 0.0591 kg a.i./ha for the aquatic foliar use (two applications allowed per annual growth cycle) according to the proposed label. For direct in water applications, the maximum application rate is $150 \mu g/L$ (ppb) of active ingredient (one application allowed at this rate).

Structure	Mass [g/mole]	Chemical name
	439.24	IUPAC: Benzyl 4-amino-3-chloro-6-(4- chloro-2-fluoro-3-methoxy-phenyl)-5- fluoro-pyridine-2-carboxylate Formula: C ₂₀ H ₁₄ Cl ₂ F ₂ N ₂ O ₃ SMILES Code: [H]N([H])c1c(c(nc(c1Cl)C(=O)OCc2ccccc 2)c3ccc(c(c3F)OC)Cl)F

Table 1: Structure of Florpyrauxifen-benzyl

This drinking water assessment is related to a Section 3 (new chemical) for florpyrauxifen-benzyl. There are four proposed products containing florpyrauxifen-benzyl: GF-3301, GF-3206, GF-3480, and GF-3565, which are liquid formulations. The maximum seasonal application rate is 0.060 kg a.i./ha for the use on rice and 150 ppb for the aquatics use pattern. The chemical may be applied by air or ground equipment, or directly in water (for the aquatics use pattern).

The model used for this Tier 1 screening level drinking waters assessment is the Tier 1 Rice Model v.1.0 (rice use). For the aquatics uses, the maximum application rate was assumed. No degradates were modelled.

Florpyrauxifen-benzyl degradation is dependent on the environmental conditions, and it degrades from rapidly to slowly in different environments; further, it yields several degradates. Major degradates differ when the test substance is exposed to light, compared to soil/sediment metabolism studies. Levels of unextracted radioactivity were high in most of the metabolism studies. In the field, it appears that a combination of routes of dissipation takes place. The majority of the mass of parent is expected to reach paddy water/soil, while a smaller amount is expected to

reach adjacent surface water by drift. Parent reaching paddy water/soil is expected to partition into the soil and in the paddy environment and degrade rather quickly [$t_{1/2} = 12-31$ days in aerobic soil (flooded system), and 15-46 days in anaerobic soil environments; if the test substance is applied to dry soils, the half-lives will range from 8.9-67.2 days]. The following degradates are expected to form in the aquatic environments (based on the aerobic flooded and anaerobic soil metabolism studies): XDE-848 acid (73.5% maximum, with a half-life of 14 days under aerobic conditions); XDE-848 benzyl hydroxy (15.9% maximum, with a half-life of 87 days); and XDE-848 hydroxy acid (68.9% maximum, with a half-life of 127-729 days). Parent reaching water bodies by drift or applied directly to water (aquatics use), is expected to degrade rather quickly ($t_{1/2} = 4.0-6.2$ days in aerobic aquatic, and 2.1-2.4 days in anaerobic aquatic environments), forming the following degradates: XDE-848 acid (46.9% maximum, with a half-life of 6.3-18 days under aerobic aquatic metabolism conditions); XDE-848 hydroxy acid (104.4% maximum, with a half-life of 53-121 days aerobic aquatic conditions, while it was the terminal degradate under anaerobic aquatic metabolism conditions).

A more definitive assessment could be conducted, using the more refined Tier II aquatic surface water model Pesticides in Flooded Application Model (PFAM v.2.0), if the HED requested it. A summary of the results obtained of Tier I modeled drinking water concentrations, is tabulated below (**Table 2**).

 Table 2. Maximum surface waters Estimated Drinking Water Concentrations (EDWCs) for drinking water risk assessment based on in-water application of florpyrauxifen-benzyl for the aquatics uses

Use	Acute (ppb)	Chronic (ppb)
Aquatics, 150 ppb/season	150	≤150

While water in rice paddies may leach into the subsurface, the degree of leaching is limited by the presence of impervious claypan soils. Although pesticides have been found in groundwater near rice paddies, rice growing areas are not considered to be highly vulnerable to movement of pesticides into groundwater. Rice paddies are designed to hold water for extended periods of time, and the amount of leaching is expected to be low compared to that of vulnerable areas. Surface water concentrations of pesticides are also expected to be higher than groundwater concentrations². Therefore, groundwater simulations will not be completed for use of florpyrauxifen-benzyl on rice.

PROBLEM FORMULATION

This is a Tier I drinking water assessment that uses modeling to estimate the surface water concentrations of florpyrauxifen-benzyl, in drinking water source water (pre-treatment) resulting from pesticide use on rice and aquatics use sites. This initial tier screens out chemicals with low potential risk and provides estimated exposure concentrations for the human health dietary risk assessment.

² CRC. 2013. *Rice-Specific Groundwater Assessment Report*. July 2013. Central Valley Regional Water Quality Control Board. California Rice Commission. Available at the following URL (accessed May 21, 2016): http://www.waterboards.ca.gov/centralvalley/water_issues/irrigated_lands/regulatory_information/rice_growers_sacvalley_wdr s/2013july_crc_gar_final.pdf.

ANALYSIS

Use Characterization

There are four products containing florpyrauxifen-benzyl (**Tables 3 and 4**). Two of the products have only florpyrauxifen-benzyl as the sole active ingredient, while two of the products are coformulated with penoxsulam and cyhalofop, respectively. While all of the products can be used on rice crops (**Table 3**), the only product that can be used in aquatics use sites is GF-3301 (**Table 4**). The aquatics uses for the product GF-3301, are for the "management of freshwater aquatic vegetation in ponds, lakes, reservoirs, marshes, wetlands, bayous, drainage ditches, canals, and other aquatic sites, including vegetation control on shoreline and riparian areas within or adjacent to these sites."

Product Name	GF-3301	GF-3206	GF-3480	GF-3565
A.I.s by weight	26.5% florpyrauxifen-	2.7% florpyrauxifen-	2.13% florpyrauxifen-	1.3% florpyrauxifen-
	benzyl	benzyl	benzyl;	benzyl;
			10.64% cyhalofop	2.1% penoxsulam
A.I.s by volume	2.50 lb a.i./gal	0.21 lb a.i./gal	0.17 lb a.i./gal	0.10 lb a.i./gal
	florpyrauxifen-benzyl	florpyrauxifen-benzyl	florpyrauxifen-benzyl;	florpyrauxifen-benzyl;
			0.83 lb a.i./gal	0.17 lb a.i./gal
			cyhalofop	penoxsulam
Uses	Rice			
Geographic	Only in AR; FL; LA; MO; MS; SC; TN; TX			
Restrictions				
Single Rate (based	0.5–1.37 fl oz/acre/app ¹ ;	6–16 fl oz/acre/app ¹ ;	20.5 fl oz/acre;	27.4 fl oz/acre;
on florpyrauxifen-	maximum rate is	maximum rate is	0.0272 lb a.i./A or	0.0214 lb a.i./A or
benzyl)	0.0268 lb a.i./A or	0.0263 lb a.i./A or	0.0305 kg a.i./ha	0.0240 kg a.i./ha
	0.0300 kg a.i./ha	0.0294 kg a.i./ha	_	
Max. No. of Apps	2		1	
Int. between Apps	14		Not Applicable	
(days)				
Timing of App	From 2 leaf stage (drill-see	eded rice or water-seeded	rice) with no exposed root	ts up to 60 days before
	harvest.		_	
Pre-harvest Interval	60			
(days)				

Table 3. Summary of Florpyrauxifen-benzyl Proposed Products/Labels - Rice Use

¹ Rate depends on weed controlled.

Table 4. Summary of Florpyrauxifen-benzyl Proposed Product/Label – Aquatics Use

Product Name	GF-3301 only			
Uses	Aquatics			
Geographic Restrictions	Ponds, lakes, reservoirs, marshes, wetlands, bayous, drainage ditches, canals, and other aquatic sites (freshwater aquatic vegetation)			
Type of Application	Direct application to water	Foliar applications or foliar spot treatments: by boat or with ground equipment, or aerial		

Product Name	GF-3301 only			
Application Rate	10-150 ppb (or 150 ppb per annual growth cycle);50 ppb or less is the typical rate; 150 ppb is the maximum rate	 1.4–2.7 fl oz/acre/app; maximum single app rate is 0.0527 lb a.i./A/app or 0.0591 kg a.i./ha/app; 5.4 fl oz/acre/annual growing cycle; 0.105 lb a.i./A or 0.118 kg a.i./ha/ annual growing cycle 		
Max. No. of Apps	1 at maximum rate	2 at maximum rate		
Int. between Apps (days)	10 days, if less than the maximum rate is used	Not specified, assume 10 days		

The products GF-3301 and 3206 do not provide residual weed control. The use of an agriculturally approved methylated seed oil (MSO) adjuvant is recommended for GF-3301 and GF-3206. The GF-3480 and GF-3562 formulations have adjuvant built-in. GF-3301, GF-3206, GF-3480, and GF-3565 can be tank mixed with a number of other herbicides as listed in each label. The most restrictive instructions of tank mixed products should be followed. The products GF-3301, GF-3206, GF-3480, and GF-3565 are not for use on wild rice.

For the rice use (all four products), the minimum spray volume is 10 gallons per acre (gpa) for both aerial and ground applications. Applications at wind speeds below 2 mph should be avoided (it is stated that drift potential is lowest at wind speeds of 2-10 mph). These products should not by applied under conditions of a low level air temperature inversion. Further, it is instructed to use coarse droplet category per S- 572 ASABE standard at spray boom pressure no greater than 30 psi for aerial applications, in order to minimize spray drift. For the aerial applications, the boom height should not be greater than 10 feet above the top of the largest plants, unless a greater height is required for aircraft safety. For ground applications, the use of coarse or coarser nozzle spray quality per S-572 ASABE standard is instructed.

Florpyrauxifen-benzyl in these products can be applied pre-flood and post-flood. For post-flood applications, the flood water should be lowered to expose at least 70% of the weed foliage (*e.g.*, 1 to 2 inches deep). Normal flood should be re-established, beginning within 3 hours after application, preventing germination of new weeds. Per the labels, establishing permanent flood <5 days after application of product can benefit weed control. According to the labels, all four products GF-3301, GF-3206, GF-3480 and GF-3565 are rainfast in 2 hours. Resistance management language is also added to the labels, and the products should be used as part of an Integrated Pest Management (IPM) programs.

For the aquatics uses of GF-3301, a permit is required prior to chemical application. There are certain restrictions for using treated water for irrigation. For the in-water applications (to submersed or floating aquatic weeds), the product can be applied undiluted, or diluted with water. For post-emergent foliar applications (to floating and emergent weeds), an approved surfactant for aquatics uses should be used and product should be diluted with water to achieve proper coverage of treated plants. Spray volumes up to 100 gpa are recommended for the ground foliar applications. A coarse or coarser nozzle spray quality per S-572 ASABE standard is recommended. For spot treatments, product should be diluted 0.01 to 0.02% GF-3301 plus an adjuvant added. Spray coverage should be sufficient to moisten the leaves of the target vegetation but not to the point of runoff. For the aerial foliar applications, the spray volume should be 15 gpa or more and a coarse

droplet category per S-572 ASABE standard should be used. GF-3301 may be mixed with other herbicides or algaecides registered for aquatic use (unless prohibited by the label).

Fate and Transport Characterization

Florpyrauxifen benzyl degradation is dependent on the environmental conditions, and it degrades from rapidly to slowly in different environments; further, it yields several degradates. Major degradates differ when the test substance is exposed to light, when compared to soil/sediment metabolism studies. Levels of unextracted radioactivity were high in most of the metabolism studies. In the field, it appears that a combination of routes of dissipation takes place.

Table 5 gives a summary of physicochemical properties of florpyrauxifen-benzyl.**Table**6 provides a summary of environmental fate properties of the chemical, along with some fate information about its transformation products.

Property	Value and units	MRID or Source
Molecular Weight	439.2 g/mole	49677702
Chemical Formula	$C_{20}H_{14}Cl_2F_2N_2O_3$	49677702
CAS No.	1390661-72-9	49677702
Structure		49677702
	NH ₂	
Physical State	Powder (as manufactured) @ 21.3°C	49677702
Relative Density	Relative density 1.39	49677702
Bulk Density	Bulk Density 0.202 g/mL at 23.4°C	
	Tap Density 0.320 g/mL at 23.4°C	
Vapor Pressure	4.6 x 10 ⁻⁵ Pa (3.5 x 10⁻⁷ torr) at 25°C	49677702
	3.2 x 10 ⁻⁵ Pa (2.4 x 10 ⁻⁷ torr) at 20°C	
	Classified as	
	'Non-volatile under field conditions.' ⁽¹⁾⁽³⁾	
Henry's Law Constant	9.2 x 10^{-6} atm-m ³ /mole at 20° C	Estimated from water
		solubility and vapor
	1.3 x 10 ⁻⁵ atm-m ³ /mole, using VP at 25°C and S at 20°C	pressure
Water Solubility	Purified Water: 0.015 mg/L at 20°C	49677702
	pH 5 buffer solution: 0.014 mg/L	
	pH 7 buffer solution: 0.011 mg/L	
	pH 9 buffer solution: 0.012 mg/L	

 Table 5. Physicochemical Properties of Florpyrauxifen Benzyl (XDE-848 Benzyl Ester)

Property	Value and units	MRID or Source
Solubility in Organic	All at 20°C: methanol 13 g/L	49677702
Solvents	acetone 210 g/L	
	xylene 14 g/L	
	1,2-dichloroethane 95 g/L	
	ethyl acetate 120 g/L	
	n-heptane 0.053 g/L	
	n-octanol 4.9 g/L	
Octanol – water	pH 5: $\log_{10} P_{OW} = 5.4 \pm 0.1$ at 20°C	49677702
partition coefficient	pH 7: $\log_{10} P_{OW} = 5.5 \pm 0.04$ at 20°C	
(K _{OW})	pH 9: $\log_{10} P_{OW} = 5.5 \pm 0.1$ at 20°C	
Air-water partition	$K_{AW} = C_{air}/C_{water} =$	Calculated
coefficient (KAW)	$HLC/(RT) = 3.84 \text{ x } 10^{-4} \text{ (unitless) at } 20^{\circ}C$	
	Classified as	HLC = Henry's Law
	'Slightly volatile from a water surface.' ⁽¹⁾	Constant
Octanol-air partition	$K_{OA} = K_{OW}/K_{AW} = 8.2 \text{ x } 10^8 \text{ (unitless)}$	Calculated
coefficient (K _{OA})		
$C_{water+soil}/C_{air}$	$C_{water+soil}/C_{air} = (C_{water}/C_{air})(1/r + K_d) =$	Calculated
	$(2604) (1/6 + 796.5) = 2.07 \times 10^{6} {}^{(3)}$	
	Classified as 'Non-volatile from a moist soil.' ⁽¹⁾⁽²⁾⁽³⁾	
Dissociation Constant	Does not dissociate in the environmental	49677702
	pH range (pH 4 to 10)	
pH	6.58 at 23.4 °C (1% dilution in water)	49677702
UV/Visible light	Neutral: λ max at 212, 245 nm	49677702
absorption	Acidic: λ max at 212, 245 nm	
	Alkaline: λ max at 217, 241 nm	

(1) For classification scheme, see "Guidance for Reporting on the Environmental Fate and Transport of the Stressors of Concern in Problem Formulations," available at (accessed 07/07/2016): <u>https://www.epa.gov/pesticide-science-and-assessing-pesticide-risks/guidance-reporting-environmental-fate-and-transport</u>.

(2) Assuming 2% organic carbon, soil to soil water ratio (w/w) = 6, and soil water to soil air (v/v) = 1.

(3) Note that all chemicals may volatilize to some extent; this classification simply indicates that the volatility potential is very low.

Degradation and Metabolism

Florpyrauxifen benzyl undergoes base-catalyzed hydrolysis (faster hydrolysis at pH 9, relatively stable at pH 4). At neutral pH, the $t_{1/2} = 111$ days, indicating relatively slow hydrolysis in neutral water. Based on the available data, it appears that aqueous photolysis is the major route of degradation of this chemical (environmental $t_{1/2} < 0.2$ days). It should be noted, however, that this mechanism of dissipation occurs mainly in the uppermost layer of a surface body of water and might occur in the shallow/not so turbid rice paddy when applied at the early stage of rice development when the rice plant shadowing effect is low. It is less important in turbid waters following the release of contaminated water outside the paddy. In contrast to the aqueous photolysis, it is noted that florpyrauxifen benzyl degrades much more slowly in the soil photolysis study (environmental $t_{1/2} = 50$ days).

In soils, under aerobic conditions, the range of half-lives was very wide, with representative half-lives 8.9-67.2 days. In the study, there was no clear relationship of degradation and soil pH values. Under aerobic soil flooded conditions, the representative half-lives were 12-31 days in two soils tested. In the anaerobic soil metabolism study, the representative half-lives were 14.8-46.2 days, in four soils tested.

In contrast, in the two aquatic metabolism studies, the half-lives for florpyrauxifen-benzyl were lower than in the soil studies described above. The aerobic aquatic metabolism SFO representative half-lives were 4-6 days, and the anaerobic aquatic metabolism SFO representative half-lives ~2 days in both sediments tested. In the aquatic metabolism studies, the pH of the sediments/water systems were relatively high (especially the anaerobic study), which may have promoted hydrolysis of the parent compound.

Study	Value and unit	Major Degradates; <i>Minor Degradates</i>	MRID or Citation	Study Classification, Comment
Abiotic Hydrolysis	XDE-848 BE SFO half-life at $25^{\circ}C =$ pH 4 = Stable pH 7 = 111 days pH 9 = 1.23 days XDE-848 acid was stable at 50°C and pH's of 4, 7 and 9 for 5 days.	Major at pH 7: XDE-848 acid; Benzyl alcohol	49677711	Acceptable; Note: Additional studies were conducted for XDE-848 BE at 10°C, 35°C and 50°C, but they are not reported in this table.
Atmospheric Degradation	XDE-848 BE half-life = 1.12 days, estimated for OH radical reaction; No ozone reaction estimation.	Not Available	49677713 EPI Suite v.4.11 Estimates; AOPWIN v.1.92	Supplemental; Hydroxyl radical reaction assumptions: at 25 ^o C and 12-hr day; 1.5x10 ⁶ OH/cm ³
Direct Aqueous Photolysis	pH 4 buffered solution: Corrected to natural summer sunlight (40°N) environmental photolysis SFO half-life = XDE-848 BE t _{1/2} = 0.0786 days	Major: Des-chloro XDE-848 acid; Des-chloro XDE-848 Benzyl ester; Benzyl alcohol <i>Minor</i> : X12421263	49677712	Supplemental; In pH 4 buffer: XDE-848 Benzyl Ester was stable in the dark control.
	Natural water: Corrected to natural summer sunlight (40°N) environmental photolysis SFO half-life = XDE-848 BE t _{1/2} = 0.161 days	Major: Des-chloro XDE-848 Benzyl ester; Benzyl alcohol <i>Minor</i> : Des-chloro XDE-848 acid; XDE-848 acid		In natural water: XDE-848 Benzyl Ester shows an SFO $DT_{50} =$ 5.87 days in the dark controls. XDE-848 acid was higher in the dark control than in the irradiated samples and it was not considered a phototransformation product.

Table 6.	Environmental	Fate Propertie	s of Florpy	rauxifen-benzvl	(XDE-848 Benz	vl Ester)
			· · · · · · · · · · · · · · · · · · ·		(110 1 0 10 2011)	,

Study	Value and unit	Major Degradates; <i>Minor Degradates</i>	MRID or Citation	Study Classification, Comment
Soil Photodegradation	Natural summer sunlight (40°N) SFO environmental half-life for XDE-848 BE $t_{1/2} = 50$ days, German loam (Speyer 2.4); The degradation appeared to slow down with time.	Major: Unextracted Residues Minor: Des-chloro XDE-848 Benzyl Ester; Des-chloro XDE-848 acid; XDE-848 acid	49677714	Supplemental; The preferred kinetics model from PestDF is DFOP instead of SFO. The uncorrected DFOP slow $t_{1/2} = 46.3$ days.
Aerobic Soil Metabolism (20°C)	XDE-848 BE half-life = 348 days (DFOP), Yolo loam soil (CA), pH 7.2; 129 days (DFOP), loam (Germany), pH 6.2; 34 days (IORE), silt loam (UK), pH 5.9; 8.91 days (IORE), loamy sand (UK), pH 7.4; <u>and</u> , 182 days (IORE), <i>sterile</i> (via gamma irradiation) sandy loam (UK); 90 th percentile confidence bound on the mean half-life value t _{input} = 55.3 days	Major: Unextracted Residues; XR-848 acid; Nitro hydroxy acid (or X12483137) <i>Minor:</i> XR-848 Hydroxy acid; XR-848 Benzyl hydroxy	49677715	Supplemental; Estimated SFO half- lives for XR-848 acid: 64.1 days; 57.9 days; 121 days; 40.8 days
Aerobic Soil Metabolism (Flooded System) (20°C)	XDE-848 BE half-life = 31.3 days (IORE), loam (Italy); 11.6 days (IORE), sandy loam (Italy) 90 th percentile confidence bound on the mean half-life value: t _{input} = 44.6 days	Major: Unextracted Residues; XR-848 Hydroxy acid; XR-848 Acid; XR-848 Benzyl hydroxy	49677716	Supplemental; Estimated SFO half- lives: XR-848 Hydroxy acid: 127, and 729 days; XR-848 acid: 14 days; XR-848 benzyl hydroxy: 86.9 days
Anaerobic Soil Metabolism (Flooded) (20°C)	XDE-848 BE half-life = 37.6 days (IORE), Yolo clay loam (CA); 14.8 days (IORE), loam (Germany); 16.9 days (IORE), silt loam (UK); 46.2 days (IORE), Site I2 sandy loam (UK); 90 th percentile confidence bound on the mean half-life value = tinput = 41.5 days	Major: Unextracted Residues; XR-848 Hydroxy acid; XR-848 Acid	49677718	Supplemental

Study	Value and unit	Major Degradates; <i>Minor Degradates</i>	MRID or Citation	Study Classification, Comment
Aerobic Aquatic Metabolism (20°C)	XDE-848 BE representative half- life = 4.04 days (SFO), loam sediment (France), water pH 7.8, sediment pH 7.1; 6.16 days (SFO), loamy sand sediment (England), water pH 6.6, sediment pH 6.2; 90 th percentile confidence bound on the mean half-life value: t _{input} = 8.36 days at 20°C.	Major: Unextracted Residues; XR-848 Hydroxy acid; XR-848 Acid; XR-848 Benzyl hydroxy; Benzoic acid	49677719	Supplemental; Estimated SFO half- lives: XR-848 Hydroxy acid: 121 and 52.5 days; XR-848 acid: 6.32 and 18 days; XR-848 benzyl hydroxy: 5.65 and 14 days
Anaerobic Aquatic Metabolism (20°C)	XDE-848 BE representative half- life = 2.37 days (SFO), loamy sand sediment (Switzerland), water pH 8.14, sediment pH 7.35; 2.1 days (SFO), silt loam sediment (Switzerland), water pH 7.42, sediment pH 7.15; 90 th percentile confidence bound on the mean half-life value: tinput = 2.65 days	Major: Unextracted Residues; Hydroxy acid; XDE-848 acid; Benzyl hydroxy; Benzoic acid <i>Minor:</i> Benzyl alcohol	49677720	Supplemental; Alkaline pH may have promoted base- catalyzed hydrolysis of the parent compound. Hydroxy acid was the terminal degradate
Mobility/ Batch Equilibrium for the parent XDE-848 BE	XDE-848 BE mean Koc = 32280 L/kgoc (See tables below.)	N/A	49677710	Supplemental
Mobility/ Batch Equilibrium for three degradates	 XDE-848 Acid mean Koc = 71.8 L/kgoc (mobile, based on FAO 2000); XDE-848 Hydroxy Acid mean Kd = 1.91 L/kg; XDE-848 hydroxy benzyl ester mean Kd = 118 L/kg. 	N/A	49677709	Supplemental

Study	Volue and unit	Major Degradates;	MRID	Study
Study	value and unit	Minor Degradates	Citation	Classification, Comment
Aquatic Field	Range of values provided for two	Major:	49677721	Supplemental
Dissipation	applications, XDE-848 BE	XDE-848 Acid;		
(Rice use)	dissipation half-lives ² =	XDE-848 Hydroxy Acid;		
		XDE-848 Hydroxy BE		
	<u>CA clay loam EC formulation</u> :	was major only in the GR		
	water: 0.159-0.199 days (SFO);	formulation applications.		
	(IOPE):	Minar (comparativaly):		
	(IOKE),	Des-chloro XDF-848 BF		
	CA clay loam GR formulation:	Des-chloro XDE-848 acid		
	Water: 0.15-0.343 days (SFO):			
	Soil: 17, 24.2 days (DFOP);			
	• • • •			
	TX sandy loam:			
	Water: N/A, 0.791 days (SFO);			
	Soil: 8.11 days (SFO), ND			
Aquatic Field	XDE-848 BE dissipation half-	Major:	49677722	Supplemental;
Dissipation	life ² =	XDE-848 actd - 35.2%	&	Demonstration
(Aquatics use)	Water half lives	(22 days)	49077723	Percentages presented
	Two sites at 50 ppb:	Minor		conducted at 150 ppb
	FL site $t_{1/2} = 1.4$ days (SEO):	XDE-848 benzyl hydroxy		conducted at 150 ppb.
	NC site $t_{1/2} = 2.3$ days (SFO):	-1.0% (22 and 28 days)		
		XDE-848 hydroxy acid –		
	One site at 150 ppb:	4.7% (22 days)		
	FL site $t_{1/2} = 6.4$ days (SFO);	Des-chloro XDE-848		
		benzyl ester – 0.2% (0.5,		
	Sediment half-lives could not be	1.5 and 2 days)		
	calculated.	Des-chloro XDE-848 acid		
Discourse traction		-0.2% (7, 14 and 22 days)	406777740	0 1 / 1
Eactor (BCE)	obtained at the highest	NIAJOR: VDE 848 acid:	496///49	Supplemental
Bluegill Sunfish	concentration and based on TRR-	Taurine conjugate of		
(Lepomis	concentration, and based on TRR-	XDE-848 acid.		
macrochirus)	356 L/kg wet wt whole fish;			
(22°C)	55 L/kg wet wt edible tissue;	Minor:		
	686 L/kg wet wt non-edible tissue;	XDE-848 deschloro acid;		
		Other degradates $\leq 1.2\%$		
	Depuration $t_{1/2} = 0.2-0.4$ days	TRR		

ND = Not Determined; TRR = Total Radioactive Residues; GR = Granular.

(1) 90th percentile confidence bound on the mean calculated using the following equation:

$$t_{input} = \overline{t_{1/2}} + \frac{t_{90,n-1}s}{\sqrt{n}}$$

(2) The value may reflect both dissipation and degradation processes.

Degradation Pathway

Figure 1 shows the registrant-proposed degradation pathway for florpyrauxifen-benzyl. Based on this pathway, de-esterification is an important process in the degradation of florpyrauxifen benzyl, since all the terminal products are carboxylic acids. Since this is a new chemical, there is no monitoring data available at this time.

CO₂, NER

Figure 1. Registrant-Proposed Degradation Pathway for Florpyrauxifen Benzyl (XDE-848 BE)

Depending on the route of degradation (*i.e.*, photolysis vs. metabolism), florpyrauxifenbenzyl displays differing major degradates (refer also to **Table A-4**, for structures and maximum percentages observed in the laboratory fate studies, in the **Appendix A**).

Mobility

The mean K_{OC} for florpyrauxifen-benzyl is 32,280 ml/g_{OC} (hardly mobile). The relatively high K_{OC} displayed by this test substance suggests that it is more likely to partition with soils and sediments, especially if they are organic carbon-rich (**Tables 7 and 8**). The vapor pressure and Henry's Law constant for florpyrauxifen-benzyl are indicative of a test substance with relatively low potential to volatilize (2.4 x 10⁻⁷ torr and 9.2 x 10⁻⁶ atm-m³/mole at 20°C, respectively). The water solubility of florpyrauxifen-benzyl is relatively low, compared to the application rates in the field of up to 150 µg/L for the in water aquatics uses (solubility in water is 15 µg/L at 20°C). It appears that the formulation improves the chemical's solubility in water.

 Table 7. <u>Adsorption</u> Coefficients for Florpyrauxifen benzyl (XDE-848 Benzyl Ester) in Six Soils (MRID 49677710)

Soil	K _d (L/kg)	Koc	K _F (L/kg)	K _{FOC}
Yolo Clay loam	248.96	31120	130.84	16354
RefSol 03G Loam	1221.64	24931	853.13	17411

Soil	K _d (L/kg)	K _{oc}	K _F (L/kg)	K _{FOC}
Site E1 Silt loam	1358.55	30876	1474.08	33502
Site I2 Sandy loam	479.08	21777	337.90	15359
Casalino Sandy loam	575.61	44278	377.67	29051
Ogori Clay loam	895.37	40699	542.17	24644
Mean	796.54	32280.17	619.30	22720.17
Standard Deviation	437.21	8746.08	483.21	7522.37
Coefficient of Variation	54.89	27.09	78.02	33.11

Table 8.	. Desorption	Coefficients for	Florpyrauxifen	benzyl (XDE-848	Benzyl Ester) i	in Six Soils
(MRID	49677710)			-	-	

Soil	K _{d-des} (L/kg)	K _{OC-des}
Yolo Clay loam	539.06	67382
RefSol 03G Loam	2488.81	50792
Site E1 Silt loam	2094.81	47609
Site I2 Sandy loam	854.83	38856
Casalino Sandy loam	1642.13	126318
Ogori Clay loam	1291.45	58702

Freundlich desorption coefficients K_F and K_{FOC} were not determined, since separate samples were prepared for the desorption study using a single nominal test concentration of 0.005 μ g/mL.

Field Dissipation

Three aquatic field dissipation studies appear to confirm what is predicted from the laboratory studies. In one study, rice plots in California³ (water seeded) and Texas (dry seeded) were used. In California, an emulsifiable concentrate and a granular formulation (not currently proposed in any label) were studied; in Texas, only the EC formulation was tested. Each of the three plots received two applications of florpyrauxifen-benzyl at a rate which was at least twice the currently proposed label/application. In California, both applications occurred to the rice field on a clay loam soil, when it was wet (*i.e.*, flooded). In Texas, the florpyrauxifen-benzyl was firstly applied to dry soil, while the second application was on a wet soil (flooded). The soil was a sandy loam. The estimated half-lives in water for both applications of the EC formulation in CA were ~0.2 days. For the granular formulation, the water half-lives were 0.15-0.34 days. In soils, for the EC formulation, the first application half-life was 1.5 days and for the second application it was 23 days. For the granular formulation, the soil half-lives were 17-24 days. For the first application in TX, the water half-life does not apply (dry seeded), but for the soil, the half-life was 8.1 days. For the second application, the water half-life was 0.79 days, while the soil half-life could not be determined.

In addition, there are two field dissipation studies, representing the aquatics proposed use pattern. In the first study, conducted in Florida and North Carolina, applications of florpyrauxifenbenzyl were performed at 50 ppb. It is apparent that 50 ppb will be a typical rate of application directly to water for the aquatics use. In another study, the maximum proposed rate of 150 ppb was used; the study was conducted only in Florida. The water half-lives in FL and NC at 50 ppb for the parent compound were 1.4-2.3 days, which appears to confirm the results of the aerobic and anaerobic aquatic metabolism studies, which predicted half-lives for florpyrauxifen-benzyl on the order of about 2-6 days, depending on the testing conditions. Further, at 150 ppb, the parent's

³ Note that according to the proposed labels, florpyrauxifen-benzyl *is not intended for use in California*.

half-life was about three times as high, with 6.4 days. Sediment half-lives could not be determined, due to variability and/or the small percentage of the total applied observed in the sediments.

Fish BCF

Although the octanol/water partition coefficient (Log K_{ow}) for florpyrauxifen-benzyl is 5.5 at pH 7 and 20°C, and considered high, the fish BCF study yielded maximum BCF values of only 356 L/Kg wet weight (for whole fish), based on the total recovered radioactivity. Although the BCF for the parent only was not reported, it will be less than 356 L/kg. Further, the depuration $t_{1/2}$ was only 0.2-0.4 days for the total recovered residues, which means that the test substance is unlikely to remain in fish tissue for extended periods of time once exposure is stopped.

Transport / Water Exposure Summary

Based on the degradation profile and the available data on the major degradates of florpyrauxifen-benzyl, the majority of the mass of parent is expected to reach paddy water/soil, while a smaller amount is expected to reach adjacent surface water by drift (maximum default value for modeling is 13.5%). The majority of parent reaching paddy water/soil is expected to partition into the soil and in the paddy environment and degrade rather quickly [$t_{42} = 12-31$ days in aerobic soil (flooded system), and 15-46 days in anaerobic soil environments; if the test substance is applied to dry soils, the half-lives will range from 8.9-67 days]. The following degradates are expected to form in the aquatic environments (based on the aerobic flooded and anaerobic soil metabolism studies): XDE-848 acid (estimated half-life of 14 days under aerobic conditions); XDE-848 benzyl hydroxy (estimated half-life of 87 days); and XDE-848 hydroxy acid (estimated half-lives of 127-729 days). Undegraded parent along with degradates listed above are expected to cause exposure to surface waters upon the release of paddy waters into surface water bodies.

Parent reaching water bodies by drift or applied directly to water (aquatics use), is expected to degrade rather quickly ($t_{1/2} = 4.0-6.2$ days in aerobic aquatic, and 2.1-2.4 days in anaerobic aquatic environments), forming the following degradates (based on the aerobic and anaerobic aquatic metabolism): XDE-848 acid (estimated half-life of 6.3-18 days under aerobic conditions); XDE-848 benzyl hydroxy (estimated half-life of 6-14 days); and XDE-848 hydroxy acid (estimated half-life of 53-121 days aerobic; it was the terminal degradate under anaerobic conditions). Undegraded florpyrauxifen-benzyl, along with degradates listed above are expected to cause exposure to surface bodies of water impacted.

In cases where the surface water is clear, the following degradates may be observed (based on the aquatic photolysis study (pH 4 and sterilized natural water): Des-chloro XDE-848 benzyl ester (it did not further degrade in pH 4 water), and Des-chloro XDE-848 acid (no estimated half-life available). It should be noted that in the field, these dechlorinated degradation products were found to be minor in three aquatic field dissipation studies (representing rice use in two sites, and aquatics uses in two sites).

While water in rice paddies may leach into the subsurface, the degree of leaching is limited by the presence of impervious claypan soils. Rice growing areas are not considered to be highly

vulnerable to movement of pesticides into groundwater. Rice paddies are designed to hold water for extended periods of time, and the amount of leaching is expected to be low compared to that of vulnerable areas.

Drinking Water Exposure Modeling

Model Description

The Tier I Rice Model v1.0 relies on an equilibrium partitioning concept to provide conservative estimates of environmental concentrations resulting from application of pesticides to rice paddies. When a pesticide is applied to a rice paddy, the model assumes that it will instantaneously partition between a water phase and a sediment phase. The Tier I rice conceptual model is simplified to the Tier I Rice Model v1.0 (see Appendix I for derivation):

$$C_w = \frac{m_{ai}'}{0.00105 + 0.00013K_d} \tag{1}$$

Where, in this case:

 C_w = water concentration [µg/L] m_{ai} ' = mass applied per unit area [kg/ha] K_d = water-sediment partitioning coefficient [L/kg]

Model input values for the water-sediment partitioning coefficient (K_d) should represent a mean K_d of relevant soil (or sediment). A mean K_{oc} value should be used to generate model input values for K_d in cases where sorption K_d values correlate with soil organic matter content. In these cases, K_d model input values should be calculated from the mean K_{oc} using a fraction of organic carbon (f_{oc}) of 0.01. K_d can thus be estimated by the following equations:

$$K_d = f_{oc} K_{oc} \tag{2}$$

$$K_d = 0.01 K_{oc} \tag{3}$$

Alternatively, mean Koc values can be directly entered into equation (4):

$$C_w = \frac{m_{ai}'}{0.00105 + 0.0000013K_{oc}}$$
(4)

Modeling Approach and Input Parameters

Table 9 lists the input parameters for florpyrauxifen-benzyl, for the use on rice.

Input Parameter	Value	Justification	Source
Application Rate (kg a.i./ha)	0.0600	0.0300 kg a.i./ha x 2 applications/year	Proposed label
Soil-to-Water Partition Coefficient (K _d) (L/kg)	322.8	Mean K _{OC} (32,280 L/kg _{OC}) x 1% organic carbon content = 322.8 L/kg	MRID 49677710

 Table 9. Tier I Rice Model v1.0 input parameters for Florpyrauxifen-benzyl

Modeling Results

Using **Equation 1**, for the rice use, the Tier 1 Rice Model v.1.0 EDWC is 1.4 ppb of florpyrauxifen-benzyl, which can be used for both acute and chronic exposure. For the aquatics use, the EDWC is 150 ppb, based on the maximum application rate in aquatics use sites (**Table 9**).

Table 10. Maximum surface waters Estimated Drinking Water Concentrations (EDWCs) for drinking water risk assessment based on aerial application of florpyrauxifen-benzyl on rice and in water application to aquatics use sites

Use	Acute (ppb)	Chronic (ppb)
Rice at maximum rate of 0.060 kg a.i./ha/season (Tier 1 Rice Model v.1.0)	1.4	≤1.4
Aquatics use pattern at maximum rate of 150 ppb/season	150	≤150

The estimated concentrations provided in this assessment are conservative estimates of concentrations in drinking water. If dietary risks require refinement, higher tiered crop-specific and location-specific models and modeling scenarios can be used.

Monitoring Data

Since this is a new chemical, no monitoring data would be found.

CONCLUSIONS

This is a Tier 1 drinking water assessment for the residues of florpyrauxifen-benzyl. Should any degradates need to be included, the EDWCs for the rice use may be expressed as a range of values, representing the included degradates. For the aquatics use pattern, the EDWCs were based on the maximum application rate allowed in the label. For the rice use pattern, the Tier 1 Rice Model v.1.0 was used. A more definitive drinking surface water assessment may be performed with the use of the Tier 2 aquatic model PFAM v.2.0.

For the aquatics use pattern, the EDWCs are unrefined/very rough estimates, given that EFED was told that HED is going to perform a qualitative assessment for florpyrauxifen-benzyl.

The following notes and/or uncertainties are cited by the Tier 1 Rice Model v.1.0 guidance. It should be noted that the results of the rice model were based on the parent compound only: Neither the degradation of the pesticide nor the mass transfer from the aqueous phase to the

sediment is considered in this conceptualization, which greatly simplifies the model. The absence of degradation adds conservatism to the model (*i.e.*, estimated concentrations should be higher than those usually found in rice paddies). The absence of mass transfer processes can either add or reduce conservatism depending on numerous conditions such as whether the pesticide is soil or water applied and whether actual degradation occurs preferentially in the sediment or the water compartment; however, consideration of this parameter is a refinement beyond a Tier I conceptualization. Most of the assumptions used in this model help ensure that the outputs are protective of most environments associated with rice agriculture. The model assumptions include the following:

- 1. Movement of pesticide on suspended sediment is not considered.
- 2. Degradation does not occur.
- 3. Volatilization and other dissipation processes are not considered.
- 4. Partitioning to sediment is instantaneous.
- 5. Water is available for human or wildlife exposure instantaneously.
- 6. Water column depth is 10 cm.
- 7. Sediment depth is 1 cm.
- 8. All pore space is saturated with water.
- 9. Organic carbon fraction is 0.01.
- 10. Bulk density is 1300 kg/m^3 .
- 11. Grain density is 2650 kg/m^3 .

Tier I model estimates are screening estimates and, as such, are expected to exceed peak values found in the environment in most cases. This expectation is due to the protective assumptions of the model listed above, such as exclusion of degradation as well as dilution with uncontaminated water outside the paddy. Evaluation of the Tier I Rice Model v1.0 indicates that modeled within-paddy estimates are conservative, exceeding peak measured concentrations of pesticides in water bodies well downstream of rice paddies by less than one order of magnitude to multiple orders of magnitude. The range of modeled estimate exceedances over measured concentrations is most likely in response to chemical, environmental, and study-specific factors.

Estimates from the Tier I model generally do not represent typical concentrations found in human drinking water, as they represent paddy discharge water. However, these concentrations may be a reasonable estimate of acute concentrations for use in ecological assessment where exposure occurs at or near the rice paddy. In both cases, human drinking water and ecological exposure, the chronic concentrations as well as offsite concentrations are expected to be conservative. A higher tier rice model should be used to estimate chronic exposure to compounds that degrade rapidly into degradates that are not of risk concern. For florpyrauxifen-benzyl under aquatic conditions, the parent alone degrades at moderate rates; however, if XDE-848 acid and/or other degradates are to be included, the degradation of the total toxic residues would proceed more slowly.

If Tier I estimates calculated by this screening method do not exceed the level of concern in a risk assessment, there is high confidence that there will be little or no risk above the level of concern from exposure through water resources. However, because of the uncertainties associated with a screening method, when a level of concern is exceeded it cannot be determined whether the exceedance will in fact occur or whether this method has overestimated the exposure.

Water Treatment

It is likely that primary treatment *may* reduce the levels of florpyrauxifen-benzyl due to its tendency to bind. However, there is no information available at this time to determine the levels of reduction. Furthermore, the softening of drinking water will generally result in an increase in pH. Florpyrauxifen-benzyl is more susceptible to hydrolysis under alkaline conditions; therefore, softening *may* result in increased dissipation from hydrolysis, and consequently possible formation of XDE-848 acid (USEPA 2011).

REFERENCES

- Food and Agriculture Organization of the United Nations. FAO PESTICIDE DISPOSAL SERIES
 8. Assessing Soil Contamination: A Reference Manual. Appendix 2. Parameters of pesticides that influence processes in the soil. Editorial Group, FAO Information Division: Rome, 2000. <u>http://www.fao.org/DOCREP/003/X2570E/X2570E0.htm</u>.
- U.S. Environmental Protection Agency (USEPA) 2006. Tier I Drinking Water Assessment Guidance and Guidance for Developing a Tier I Drinking Water Exposure Assessment. OCSPP/OPP/Environmental Fate and Effects Division. Dated 01/27/2006.
- USEPA 2007a. Tier II Drinking Water Exposure Assessment Guidance. OCSPP/OPP/ Environmental Fate and Effects Division. Dated 05/28/2007.
- USEPA 2007b. Guidance for Tier I Estimation of Aqueous Pesticide Concentrations in Rice Paddies. And, Attachment I. Tier I Rice Model v1.0 for Estimating Pesticide Concentrations in Rice Paddies. OCSPP/OPP/Environmental Fate and Effects Division. Dated May 8, 2007.
- USEPA 2011. Finalization of Guidance on Incorporation of Water Treatment Effects on Pesticide Removal and Transformations in Drinking Water Exposure Assessments and The Incorporation of Water Treatment Effects on Pesticide Removal and Transformations in Food Quality Protection Act (FQPA) Drinking Water Assessments. OCSPP/OPP/ Environmental Fate and Effects Division. Dated 12/05/2011.

Appendix A. Structures and Further Information of Florpyrauxifen-benzyl and its Transformation Products

Major Degradation Products

<u>XDE-848 acid</u> (maximum observed: up to 99.5% in the pH 9 hydrolysis study at 35°C): This compound results from the hydrolysis of the ester moiety of the parent compound (which results in an acid and an alcohol). It does not have the benzyl ring from the parent in its structure. This compound was a major degradate in many of the studies, including hydrolysis and metabolism. It was also an important component in fish tissue. XDE-848 acid was found to be stable to hydrolysis at a range of pH values. *Estimated* decline half-lives from the available studies are: 41-121 days in the aerobic soil metabolism study; 14 days in one of the soils of the aerobic soil flooded metabolism study; and 6-18 days in the aerobic aquatic metabolism study.

There is a batch equilibrium study that gives information on the mobility of three of the degradates of florpyrauxifen benzyl: for XDE-848 acid the mean $K_{OC} = 71.8 \text{ L/kg}_{OC}$; for XDE-848 hydroxy acid the mean $K_d = 1.91 \text{ L/kg}$; and for XDE-848 hydroxy benzyl ester (or benzyl hydroxy) the mean $K_d = 118 \text{ L/kg}$. All three degradates appear to be more mobile than the parent compound.

Soil	K _d (L/kg)	Koc (L/kgoc)	K _F (L/kg)	KFOC (L/kgoc)
Yolo Clay loam	0.38	48	0.49	62
Ogori clay loam	2.82	128	3.02	137
RefSol 03-G Loam	1.38	28	1.48	30
Site E1 Silt loam	1.56	35	1.73	39
RefSol 01-A Loamy sand	0.71	65	0.83	76
Site K Loam	1.64	50	1.83	56
San Pietro Loam	2.18	136	2.37	148
Casalino Sandy loam	2.27	174	2.54	196
Site I2 Sandy loam	0.55	25	0.67	31
Centerville Clay loam	0.21	41	0.26	52
Bernard-Edna Sandy clay loam	0.36	89	0.45	113
Site Fr3 Sandy loam	0.86	45	0.99	52
Site Sp4 Silty clay	2.39	68	2.51	72
Mean	1.33	71.8	1.48	81.8
Standard Deviation	0.89	46.9	0.93	51.2
Coefficient of Variation (%)	86.6	65.3	63.0	62.7

 Table A-1. Adsorption Coefficients for XDE-848 Acid (MRID 49677709)

<u>XDE-848 benzyl hydroxy</u> (maximum observed: 43.1% AR in one of the anaerobic aquatic metabolism studies): This compound results from the loss of a methyl group, but it keeps the ester moiety of the parent compound (*i.e.*, it has the benzyl ring in its structure). It was a major degradate in metabolism studies involving flooded soils or sediments (aerobic or anaerobic). Estimated decline half-lives were 87 days for one of the aerobic soil metabolism study (flooded system) and 6-14 days in the aerobic aquatic metabolism study.

Soil	K _d (L/kg)	Koc (L/kgoc)	K _F (L/kg)	KFOC (L/kgoc)
Yolo Clay loam	10.14	1268	10.51	1314
Ogori clay loam	149.34	6788	123.72	5624
RefSol 03-G Loam	330.65	6748	285.97	5836
Site E1 Silt loam	272.64	6196	226.77	5154
RefSol 01-A Loamy sand	72.39	6581	67.91	6174
Site K Loam	26.51	803	25.68	778
San Pietro Loam	368.38	23024	273.06	17066
Casalino Sandy loam	184.87	14221	160.61	12355
Site I2 Sandy loam	33.56	1525	30.00	1364
Centerville Clay loam	3.85	770	4.22	845
Bernard-Edna Sandy clay loam	10.15	2538	10.21	2552
Site Fr3 Sandy loam	19.59	1031	19.42	1022
Site Sp4 Silty clay	52.67	1505	49.07	1402
Mean	118.1	5615.2	99.0	4729.6
Standard Deviation	130.7	6523.6	104.3	4882.4
Coefficient of Variation (%)	110.7	116.2	105.4	105.3

 Table A-2. Adsorption Coefficients for XDE-848 Hydroxy Benzyl Ester (MRID 49677709)

<u>XDE-848 hydroxy acid</u> (maximum observed: up to 104.4% AR at 80 days in the anaerobic aquatic metabolism study): This compound results from the hydrolysis of the ester moiety of XDE-848 benzyl hydroxy. It does not have the benzyl ring in its structure and keeps two of the rings of the parent compound. It was a major degradate in all the metabolism studies involving flooded soils or aquatic sediments. This degradate appeared to persist longer than other degradates in the studies where decline could be calculated: 127-729 days in the aerobic soil metabolism (flooded), 51-121 days in the aerobic aquatic metabolism study, and it appears to be the terminal degradate of the anaerobic soil and aquatic metabolism test systems.

Soil	K _d (L/kg)	Koc (L/kgoc)	K _F (L/kg)	KFOC (L/kgoc)
Yolo Clay loam	0.14	18	0.20	25
Ogori clay loam	5.19	236	4.38	199
RefSol 03-G Loam	1.41	29	1.40	29
Site E1 Silt loam	2.21	50	2.10	48
RefSol 01-A Loamy sand	1.20	109	1.20	109
Site K Loam	0.47	14	0.50	15
San Pietro Loam	4.07	255	3.63	227
Casalino Sandy loam	3.51	270	3.21	247
Site I2 Sandy loam	0.46	21	0.47	21
Centerville Clay loam	0.15	30	0.15	31
Bernard-Edna Sandy clay loam	0.46	116	0.49	121
Site Fr3 Sandy loam	3.11	164	2.96	156
Site Sp4 Silty clay	2.48	71	2.43	69
Mean	1.91	106.3	1.78	99.8
Standard Deviation	1.66	95.2	1.44	83.5
Coefficient of Variation (%)	86.8	89.6	80.8	83.7

Table A-3. Adsorption Coefficients for XDE-848 Hydroxy Acid (MRID 49677709)

<u>Des-chloro XDE-848 benzyl ester</u> (maximum observed: 30.8% AR in the pH 4 aqueous photolysis study): Results from the photolysis of the parent compound. It loses a Cl atom in the structure, which is substituted by a hydrogen atom. Its structure keeps all three rings from the

parent compound. This transformation product was observed in both the aqueous and soil photolysis studies, but it was only a minor component in the soil photolysis study.

Other Degradation Products

<u>Des-chloro XDE-848 acid</u> (maximum observed: 10.4% in the aqueous photolysis study at pH 4): It is the product of the hydrolysis of Des-chloro XDE-848 benzyl ester, resulting in an acid moiety. Its structure keeps only two of the three rings from the parent compound. This degradate was observed in the aqueous and soil photolysis studies, but it exceeded 10% AR only in the pH 4 aqueous photolysis study.

<u>Nitro hydroxy acid (X12483137)</u> (maximum observed: 11.1% in one of the soils of the aerobic soil metabolism studies): It is a major product of the aerobic soil metabolism study (one of the soils, and minor in the remaining soils).

<u>Benzyl alcohol</u> (maximum observed: 100% in pH 9 hydrolysis study at 25°C): Major product of the hydrolysis and the aqueous photolysis studies. Appeared to be the terminal degradate of the hydrolysis study.

<u>Benzoic acid</u> (maximum observed: 21.3% in the aerobic aquatic metabolism study): Major product of the aerobic and anaerobic aquatic metabolism studies. For the benzyl labeled studies, oftentimes the recovered radioactivity fell below guideline criteria (<90% AR), and the study author attributed it to possible loss of carbon dioxide.

 $\underline{X12421263}$ (maximum observed: 6.1% in the pH 4 aqueous photolysis study): Minor product in the aqueous photolysis study at pH 4 (not observed in natural water, and not detected by the end of the pH 4 study).

<u>Taurine conjugate of XDE-848 acid</u>: It was observed in minor amounts in fish tissue in the Fish BCF study.

<u>Four unidentified degradates</u> (at \sim 10-13% AR): Two of which were observed in the aqueous photolysis study, and the other two were observed in the anaerobic aquatic metabolism study.

<u>Carbon dioxide</u>: It was a major product in many of the metabolism studies, especially for the benzyl labeled test substance.

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)	Final %AR (study length)
		PARENT				
Florpyrauxifen-benzyl (XDE-848 Benzyl Ester, BingleorTM XD 848 DE	IUPAC: Benzyl 4-amino-3- chloro-6-(4-chloro-2-fluoro-3- methoxy-phenyl)-5-fluoro-		835.2120 Hydrolysis	49677711		
XR-848 Benzyl, X11959130,	methoxy-phenyl)-5-fluoro- pyridine-2-carboxylate Formula: C ₂₀ H ₁₄ Cl ₂ F ₂ N ₂ O ₃ MW: 439.24 g/mol		835.2240 Aqueous photolysis	49677712		
15N301734)	SMILES: [H]N([H])c1c(c(nc(c1Cl)C(=O)OC c2ccccc2)c3ccc(c(c3F)OC)Cl)F		835.2410 Soil photolysis	49677714	PRT	PRT
			835.4100 Aerobic soil metabolism	49677715		
			835.4200 Anaerobic soil metabolism	49677718		
			835.4300 Aerobic aquatic metabolism	49677716 49677719		
			835.4400 Anaerobic aquatic metabolism	49677720		
			835.1230 Batch equilibrium	49677710		

Table A-4. Florpyrauxifen-benzyl (XDE-848 Benzyl Ester, RinskorTM) and Its Environmental Transformation Products^A

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		Final %AR (study length)				
			835 6200	49677721							
			Aquatic field	49677722							
			dissipation	49677723							
			850.1730 Fish BCF	49677749							
	MAJ	OR (>10%) TRANSFORMATION	PRODU	CTS							
Hydroxy acid (XDE-848 hydroxy acid, XR-848 hydroxy acid, X11966341	IUPAC: 4-Amino-3-chloro-6-(4- chloro-2-fluoro-3-hydroxy- phenyl)-5-fluoro-pyridine-2- carboxylic acid		835.4100 Aerobic soil metabolism						California loam	3.30% (59 d)	3.11% (120 d)
TSN301668, TSN305649, TSN306022, OHA)	966341, Formula: C12H6Cl2F2N2O3 N301668, Formula: C12H6Cl2F2N2O3 N305649, MW: 335.09 g/mol N306022, OHA) SMILES: IHIN((HI))c1c(c(nc(c1CI)C(=O)O)) H	HH			Germany Loam	7.80% (30 d)	1.41% (120 d)				
	c2ccc(c(c2F)O)Cl)F			49677715	Silt loam	6.38% (30 d)	1.48% (120 d)				
					Loamy sand	4.10% (45 d)	1.00% (120 d)				
		ОН	835.4200		Clay loam	58.3% (126 d)	58.3% (126 d)				
			Anaerobic soil metabolism	49677718	Loam	64.4% (106 d)	63.0% (126 d)				
					Silt loam	61.5% (106 d)	61.4% (126 d)				

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		AR (day)	Final %AR (study length)			
					Sandy	/ loam	68.9% (126 d)	68.9% (126 d)			
			835.4300 Aerobic aquatic metabolism 835.4400 Anaerobic			10 (7771) (Water	r:loam	26.3% (58 d)	16.4% (156 d)	
				496///16	Water:sa	ndy loam	64.2% (72 d)	57.8% (156 d)			
		m		Aerobic aquatic metabolism	Aerobic aquatic metabolism	Aerobic aquatic metabolism	49677719	Lagoon w	vater:loam	75.2% (31 d)	47.2% (105 d)
							Lake water	loamy sand:	78.3% (59 d)	44.8% (105 d)	
		835.4400 Anaerobic		835.4400 Anaerobic	835.4400 Anaerobic 49677720	835.4400 Anaerobic 40,77720	River wa sa	ter:loamy nd	104.4% (80 d)	97.4% (105 d)	
			aquatic metabolism	aquatic metabolism	etabolism Pond wa	Pond wate	er:silt loam	100.0% (13 d)	94.3% (105 d)		
		835.6200 Aquatic field dissination	835.6200 Aquatic field dissipation		California	Soil	34.7% (3 d, 1 st Appl)	0.8% (181 d)			
				835.6200 Aquatic field dissipation	49677721	EC formulation	Water	0.1% (42 d, 2 nd Appl)	NS (181 d)		
						California Granular formulation	Soil	12.2% (3 d, 2 nd Appl)	1.0% (181 d)		

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Max	imum %	AR (day)	Final %AR (study length)	
						Water	0.2% (1 d, 1 st Appl)	NS (181 d)	
					Τ-	Soil	13.4% (28 d, 2 nd Appl)	0.0% (184 d)	
					Texas	Water	0.1% (1, 3, 15 d, 2 nd Appl)	NS (184 d)	
				Florida	Water	6.8% (14 d)	0.0% (282 d)		
			49677722	North	Sediment	0.37% (43 d)	Not analyzed (246 d)		
					Carolina	Water	2.7% (22 d)	0.0% (246 d)	
				49677723	49677723	49677723 North	Sediment	1.72% (92 d)	0.0% (246 d)
					Carolina	Water	3.7% (22 d)	0.0% (246 d)	
XDE-848 acid (X11438848, TSN304667	IUPAC: 4-Amino-3-chloro-6-(4- chloro-2-fluoro-3-methoxy- phenyl)-5-fluoro-pyridine-2-				pH 7	(10°C)	1.7% (30 d)	1.7% (30 d)	
TSN301691, 1552-A)	carboxylic acid Formula: C13H8Cl2F2N2O3		835.2120 Hydrolysis	49677711 pH	pH 9	(10°C)	89.6% (30 d)	89.6% (30 d)	
	SMILES: [H]N([H])c1c(c(nc(c1Cl)C(=O)O) c2ccc(c(c2F)OC)Cl)F				pH 4	(25°C)	2.9% (30 d)	2.9% (30 d)	

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %	AR (day)	Final %AR (study length)
					pH 7 (25°C)	16.6% (30 d)	16.6% (30 d)
					pH 9 (25°C)	98.5% (30 d)	98.5% (30 d)
					pH 4 (35°C)	5.9% (22 d)	5.7% (30 d)
		H H			pH 7 (35°C)	41.1% (30 d)	41.1% (30 d)
		F CI			рН 9 (35°С)	99.5% (30 d)	99.5% (30 d)
					pH 4 (50°C)	5.1% (5 d)	5.1% (5 d)
					pH 7 (50°C)	46.6% (5 d)	46.6% (5 d)
		о сн			pH 9 (50°C)	98.6% (5 d)	98.6% (5 d)
			835.2240 Aqueous photolysis	49677712	Natural water	8.9% (0.17 d)	0.8% (15.91 d)
			835.2410 Soil photolysis	49677714	Loam	7.0% (10 d)	6.7% (17 d)
			835.4100 Aerobic soil metabolism	49677715	California loam	39.71% (30 d)	19.67% (120 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %	AR (day)	Final %AR (study length)
					Germany Loam	32.95% (9 d)	8.08% (120 d)
					Silt loam	37.67% (15 d)	23.50% (120 d)
					Loamy sand	62.40% (7 d)	5.66% (120 d)
					Clay loam	61.3% (26 d)	22.2% (126 d)
			835.4200 Anaerobic	10 (7771)	Loam	39.2% (18 d)	3.1% (126 d)
			soil metabolism	49677718	Silt loam	25.2% (18 d)	1.1% (126 d)
					Sandy loam	73.5% (26 d)	16.8% (126 d)
				40677716	Water:loam	8.1% (6 d)	0.4% (156 d)
			835.4300 Aerobic	49077710	Water:sandy loam	33.1% (20 d)	0.7% (156 d)
			aquatic metabolism	49677719	Lagoon water:loam	30.6% (3 d)	1.6% (105 d)
					Lake water:loamy sand	45.2% (21 d)	1.2% (105 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)			Final %AR (study length)
			835.4400 Anaerobic	10 /	River wa	ter:loamy nd	27.9% (7 d)	ND (105 d)
		aqu metab	aquatic metabolism	49677720	Pond wate	er:silt loam	46.9% (3 d)	ND (105 d)
					California EC	Soil	21.6% (3 d, 1 st Appl)	0.9% (181 d)
			825 (200	49677721	formulatio n	Water	3.9% (3 d, 1 st Appl)	NS (181 d)
					California Granular formulatio n	Soil	6.8% (3 d, 1 st Appl)	0.5% (181 d)
			Aquatic field dissipation			Water	13.7% (1 d, 1 st Appl)	NS (181 d)
						Soil	12.3% (7 d, 1 st Appl)	0.0% (184 d)
					Texas	Water	6.6% (1 d, 2 nd Appl)	NS (184 d)
				49677722	Florida	Sediment	0.42% (14 d)	Not analyzed (282 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Max	imum %	AR (day)	Final %AR (study length)
						Water	17.4% (14 d)	0.0% (282 d)
					North Carolina	Water	33.0% (14 d)	0.0% (246 d)
				49677723	North Carolina	Water	35.2% (22 d)	0.0% (246 d)
			850.1730 Fish BCF	49677749		NA		NA
Benzyl hydroxy (XDE-848 Hydroxy BE, X12300837, TSN302111, TSN30559, OUDE)	IUPAC: Benzyl 4-amino-3- chloro-6-(4-chloro-2-fluoro-3- hydroxy-phenyl)-5-fluoro- pyridine-2-carboxylate				Califor	nia loam	2.45% (0 d)	1.11% (120 d)
131(303030, OHDE)	MW: 425.21 g/mol SMILES: [H]N([H])c1c(c(nc(c1Cl)C(=O)OC c2cccc2)c3ccc(c(c3F)O)Cl)F	F CI	835.4100 Aerobic soil metabolism	49677715	Germa	ny Loam	2.49% (0 d)	0.74% (120 d)
					Silt	loam	2.50% (0 d)	0.59% (120 d)
					Loam	y sand	2.44% (0 d)	ND (120 d)
	dн	о́н	835.4300 Aerobic	49677716	Wate	r:loam	15.9% (30 d)	6.8% (156 d)
			metabolism		Water:sa	ndy loam	6.5% (20 d)	0.6% (156 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maxi	imum %/	AR (day)	Final %AR (study length)
				49677719	Lagoon w	vater:loam	22.8% (7 d)	0.2% (105 d)
					Lake water	loamy sand	13.2% (14 d)	0.1% (105 d)
		835 Ana aq meta	835.4400 Anaerobic	49677720	River wa sa	ter:loamy nd	21.5% (10 d)	ND (105 d)
			aquatic metabolism	atic olism	Pond wate	er:silt loam	43.1% (10 d)	ND (105 d)
					California EC formulatio n	Soil	0.5% (3 d, 1 st Appl)	0.0% (181 d)
				49677721 Californi Granular formulati n	California Granular formulatio	Soil	10.0% (14 d, 2 nd Appl)	1.5% (181 d)
			835.6200 Aquatic		n	Water	0.1% (1 d, 1 st Appl)	NS (181 d)
			dissipation		Texas	Water	0.1% (1 d, 2 nd Appl)	NS (184 d)
				40(77722)	Florida	Water	1.5% (14 d)	0.0% (282 d)
				49677722	North Carolina	Sediment	0.18% (125 d)	Not analyzed (246 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Max	imum %	AR (day)	Final %AR (study length)		
						Water	0.3% (7 d)	0.0% (246 d)		
				49677723	North	Sediment	0.52% (28 d)	0.0% (246 d)		
					Carolilla	Water	0.5% (22 d)	0.0% (246 d)		
Des-chloro XDE-848 Benzyl Ester (De- Chloro BE X12121022	IUPAC: Benzyl 4-amino-6-(4- chloro-2-fluoro-3-methoxy- phenyl)-5-fluoro-pyridine-2-	22 H N H F F O O O O O O O O O O O O O	835.2240 Aqueous	49677712	pH 4		30.8% (0.17 d)	ND (17.99 d)		
TSN304946, DBE)	carboxylate Formula: C20H15ClF2N2O3		photolysis	4907712	Natura	l water	28.4% (0.17 d)	ND (15.91 d)		
	MW: 404.79 g/mol SMILES: [H]N([H])c1cc(nc(c1F)c2ccc(c(c2 E)CC)C)C(=0)OCc3ccccc3		B B B B B B B B B B B B B B B B B B B	835.2410 Soil photolysis	49677714	Lo	am	3.4% (1 d)	2.9% (17 d)	
	1)00)01)0(=0)000300003					49677721	California EC formulatio n	Water	0.1% (0 d, 1 st Appl)	NS (181 d)
					Texas	Water	0.1% (0 d, 2 nd Appl)	NS (184 d)		
			835.6200 Aquatic	.6200 uatic	Florida	Water	0.2% (0.04, 0.25, 0.5 d)	0.0% (282 d)		
		d d	Сн ₃ field dissipation 49677722 North	North	Sediment	0.29% (125 d)	Not analyzed (246 d)			
					Carolina	Water	0.1% (0.04, 0.25, 0.5, 1, 1.5 d)	0.0% (246 d)		
				49677723	North Carolina	Water	0.2% (0.5, 1.5, 2 d)	0.0% (246 d)		

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maxi	mum %	AR (day)	Final %AR (study length)
Des-chloro XDE-848 acid (De-Chloro Acid, X12393505,	IUPAC: 4-Amino-6-(4-chloro-2- fluoro-3-methoxy-phenyl)-5- fluoro-pyridine-2-carboxylic acid		835.2240 Aqueous	49677712	pH	[4	10.4% (0.99 d)	ND (17.99 d)
TSN304479, DA)	Formula: C ₁₃ H ₉ ClF ₂ N ₂ O ₃ MW: 314.67 g/mol SMILES:		pnotolysis		Natura	l water	8.4% (1.00 d)	2.4% (15.91 d)
	[H]N([H])c1cc(nc(c1F)c2ccc(c(c2 F)OC)Cl)C(=O)O		835.2410 Soil photolysis	49677714	Lo	am	2.8% (7 d)	2.1% (17 d)
		F H			California EC formulati on	Water	0.2% (3 d, 1 st Appl)	NS (181 d)
		CI CALIFORNIA O H CI CH 3 CI CH 3 CI CALIFORNIA 49677721 California Granular formulati on Texas Water Texas Water Florida Water	835.6200 Aquatic	49677721 200 tic	California Granular formulati on	Water	0.4% (1 d, 1 st Appl)	NS (181 d)
					Texas	Water	0.1% (1-7 d, 2 nd Appl)	NS (184 d)
			0.2% (1.5, 3, 8 d)	0.0% (282 d)				
				49077722	North Carolina	Water	0.2% (3, 7 d)	0.0% (246 d)
				49677723	North Carolina	Water	0.2% (7, 14, 22 d)	0.0% (246 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %	AR (day)	Final %AR (study length)
			850.1730 Fish BCF	49677749	NA		NA
Benzoic acid (X194973)	IUPAC: Benzoic acid Formula: C ₇ H ₆ O ₂ MW: 122.12 g/mol SMILES: c1ccc(cc1)C(=O)O	O H S33 Ad ac met	835.4300 Aerobic	49677719	Lagoon water:loam	21.3% (10 d)	ND (105 d)
			metabolism		Lake water:loamy sand	10.7% (14 d)	ND (105 d)
			835.4400	00	River water:loamy sand	7.4% (7 d)	ND (105 d)
			Anaerobic aquatic metabolism	obic 49677720 tic lism	Pond water:silt loam	20.2% (10 d)	ND (105 d)
Benzyl alcohol (Phenyl methanol, X195023, TSN305834)	IUPAC: Benzyl alcohol Formula: C7H8O	ОН			рН 7 (10°С)	2.7% (30 d)	2.7% (30 d)
	MW: 108.14 g/mol SMILES: c1ccc(cc1)CO		835.2120	10/27211	pH 9 (10°C)	90.7% (30 d)	90.7% (30 d)
			Hydrolysis	49677711	pH 4 (25°C)	2.0% (30 d)	2.0% (30 d)
					pH 7 (25°C)	20.1% (30 d)	20.1% (30 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %	AR (day)	Final %AR (study length)
					pH 9 (25°C)	100.0% (30 d)	100.0% (30 d)
					pH 4 (35°C)	5.3% (30 d)	5.3% (30 d)
					pH 7 (35°C)	51.5% (30 d)	51.5% (30 d)
					pH 9 (35°C)	100.0% (30 d)	100.0% (30 d)
		835.2240 Aqueous photolysis	835.2240 Acueous 49677712	pH 4	67.5% (7.01 d)	59.7% (17.93 d)	
			photolysis	49077712	Natural water	81.5% (6.90 d)	75.7% (15.88 d)
			835.4400 Anaerobic aquatic metabolism	49677720	River water:loamy sand	8.2% (7 d)	ND (105 d)
X12483137 (TSN307911, Nitro hydroxy acid, or 6-Nitro hydroxy acid)	IUPAC: 4-Amino-3-chloro-6-(4- chloro-2-fluoro-3-hydroxy-6-nitro- phenyl)-5-fluoro-pyridine-2- carboxylic acid Formula: C ₁₂ H ₅ Cl ₂ F ₂ N ₃ O ₅		835.4100 Aerobic	40/77715	California loam	8.26% (120 d)	8.26% (120 d)
Formula: $C_{12}r_{15}C_{12}r_{2}N_{3}O_{5}$ MW: 380.09 g/mol SMILES: [H]N([H])c1c(c(nc(c1Cl)C(=O)O) c2c(cc(c(c2F)O)Cl)[N+](=O)[O-]])F	soil metabolism	4907775	Germany Loam	8.33% (120 d)	8.33% (120 d)		

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		Final %AR (study length)
					Silt loam	11.14% (80 d)	10.18% (120 d)
Unknown (Rt 12:20- 12:40)	NA	Structure not provided	835.2240 Aqueous photolysis	49677712	рН 4	13.0% (1.08, 2.01 d)	8.0% (17.93 d)
Unknown (Rt 22:50- 23:00)	NA	Structure not provided	835.2240 Aqueous photolysis	49677712	pH 4	12.7% (4.01 d)	8.8% (17.93 d)
Unknown M7	NA	Structure not provided	835.4400 Anaerobic aquatic metabolism	49677720	River water:loamy sand	9.6% (0.33 d)	ND (105 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %	AR (day)	Final %AR (study length)
Unknown M10	NA	Structure not provided	835.4400 Anaerobic aquatic metabolism	49677720	Pond water:silt loam	12.9% (10 d)	ND (105 d)
Carbon dioxide	IUPAC: Carbon dioxide Formula: CO ₂		835.2240		pH 4	44.0% (17.99 d)	44.0% (17.99 d)
	MW: 44 g/mol SMILES: C(=O)=O		photolysis 835.2410	49677712	Natural water	37.5% (15.91 d)	37.5% (15.91 d)
			835.2410 Soil photolysis	49677714	Loam	13.2% (17 d)	13.2% (17 d)
			835.4100 Aerobic soil metabolism		California loam	46.58% (120 d)	46.58% (120 d)
		o <u> </u>		40677715	Germany Loam	59.13% (120 d)	59.13% (120 d)
				49077713	Silt loam	64.06% (120 d)	64.06% (120 d)
					Loamy sand	64.25% (120 d)	64.25% (120 d)
			835.4200 Anaerobic	40(77719	Clay loam	47.2% (106 d)	14.5% (126 d)
			soil metabolism	490///18	Loam	41.0% (126 d)	41.0% (126 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		Final %AR (study length)
					Silt loam	45.8% (126 d)	45.8% (126 d)
					Sandy loam	45.0% (106 d)	44.4% (126 d)
					Water:loam	37.6% (156 d)	37.6% (156 d)
	835.4300	49677716 835.4300	Water:sandy loam	71.5% (156 d)	71.5% (156 d)		
			Aerobic aquatic metabolism	49677719	Lagoon water:loam	67.34% (105 d)	67.34% (105 d)
					Lake water:loamy sand	80.67% (91 d)	75.61% (105 d)
	8	835.4400		River water:loamy sand	49.1% (105 d)	49.1% (105 d)	
			Anaerobic aquatic metabolism	49677720	Pond water:silt loam	55.1% (82 d)	52.5% (105 d)
Unextracted residues			835.2410 Soil photolysis	49677714	Loam	15.3% (17 d)	15.3% (17 d)
	NA NA	835.4100 Aerobic soil metabolism	49677715	California loam	32.92% (120 d)	32.92% (120 d)	

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		Final %AR (study length)
					Germany Loam	56.84% (120 d)	56.84% (120 d)
					Silt loam	53.09% (80 d)	52.69% (120 d)
					Loamy sand	80.58% (120 d)	80.58% (120 d)
			835.4200 Anaerobic soil metabolism	49677718	Clay loam	19.9% (18 d)	9.2% (126 d)
					Loam	40.0% (81 d)	23.9% (126 d)
					Silt loam	31.3% (81 d)	29.4% (126 d)
					Sandy loam	35.0% (12 d)	24.0% (126 d)
				10/7771/	Water:loam	61.0% (156 d)	61.0% (156 d)
			835.4300 Aerobic aquatic metabolism	490///16	Water:sandy loam	36.3% (93 d)	33.1% (156 d)
			49677719	Lagoon water:loam	42.12% (105 d)	42.12% (105 d)	

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)		Final %AR (study length)
					Lake water:loamy sand	44.27% (91 d)	38.93% (105 d)
			835.4400 Anaerobic aquatic metabolism	40677720	River water:loamy sand	12.8% (3, 10 d)	8.8% (105 d)
				49077720	Pond water:silt loam	11.8% (41 d)	9.9% (105 d)
	MIN	OR (<10%) TRANSFORMATION	PRODUCTS				
X12421263 (TSN305953)	IUPAC: Benzyl 4-amino-5-fluoro- 6-(2-fluoro-3,4-dihydroxy- phenyl)pyridine-2-carboxylate Formula: C ₁₉ H ₁₄ F ₂ N ₂ O ₄ MW: 372.32 g/mol SMILES: c1ccc(cc1)COC(=O)c2cc(c(c(n2)c 3ccc(c(c3F)O)O)F)N		835.2240 Aqueous photolysis	49677712	рН 4	6.1% (0.17 d)	ND (17.99 d)

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)	Final %AR (study length)
Taurine conjugate of XDE-848 acid (Taurine conjugate of X11433848)	IUPAC: 2-[[4-Amino-3-chloro-6- (4-chloro-2-fluoro-3-methoxy- phenyl)-5-fluoro-pyridine-2- carbonyl]amino]ethanesulfonic acid Formula: C ₁₅ H ₁₃ Cl ₂ F ₂ N ₃ O ₅ S MW: 456.25 g/mol SMILES: [H]N([H])c1c(c(nc(c1Cl)C(=O)N([H])CCS(=O)(=O)O)c2ccc(c(c2F)O C)Cl)F		850.1730 Fish BCF	49677749	NA	NA
	RE	FERENCE COMPOUNDS NOT ID	ENTIFI	ED		
YC7-146847-39	IUPAC: 4-Amino-3-chloro-6-(4- chloro-2-fluoro-3-hydroxy-5-nitro- phenyl)-5-fluoro-pyridine-2- carboxylic acid Formula: C ₁₂ H ₅ Cl ₂ F ₂ N ₃ O ₅ MW: 380.09 g/mol SMILES: [H]N([H])c1c(c(nc(c1C1)C(=O)O) c2cc(c(c(c2F)O)C1)[N+](=O)[O-])F		835.4100 Aerobic soil metabolism	49677715	NA	NA

Code Name/Synonym	Chemical Name	Chemical Structure	Study Type	MRID	Maximum %AR (day)	Final %AR (study length)
Benzaldehyde	IUPAC: Benzaldehyde Formula: C7H ₆ O MW: 106.12 g/mol SMILES: [H]C(=O)c1ccccc1		835.4400 Anaerobic aquatic metabolism	49677720	NA	NA

^A AR means "applied radioactivity". MW means "molecular weight". PRT means "parent". ND means "not detected". NA means "not applicable". EC means "emulsifiable concentrate". Appl means "Application". BCF means "bioconcentration factor". NS means "no sample".